• UTRC II SUBMISSION SYSTEM
  • Careers
  • Contact
  • Login / Register

Search form

Home
  • Home
  • About
    • Welcome to the UTRC Site
    • Theme
    • Staff
    • Board of Directors
    • Press
    • Annual Report
    • Program Progress Performance Report
    • Newsletter
  • Research
    • Projects
    • RFPs
    • Submit Your Proposal
    • Funding Categories
      • UTRC Research Initiative
      • UTRC Advanced Technology Initiative
      • UTRC Faculty Development Mini-grants
      • UTRC Best Transportation Paper Competition
      • News
  • Publications
  • Directory
    • Consortium Universities
    • Partners
    • Principal Investigators
    • Staff
    • Board of Directors
  • Education
    • Where to Study
    • Transportation and Planning Doctoral Series
    • AITE Scholarships
    • UTRC Dissertation Grants
    • Summer Institute
    • September 11th Memorial Program
    • Technology Transfer and Training
    • Online Graduate Certificate Program
    • UTRC Travel Grants
    • Student Award Recipients
    • Apply For Scholarships
  • Events
    • Upcoming Events
    • Past Events
    • Visiting Scholar Seminar Series
  • Resources

Broadband Hybrid Electromagnetic and Piezoelectric Energy Harvesting from Ambient Vibrations and Pneumatic Vortices Induced by Running Subway Trains

In 2012, there were 139 incidents in which people got hit by subway trains in New York City, compared with 146 in 2011. Most of the victims slipped or fell or went on to the tracks to fetch personal belongs. A promising approach to reduce future occurrence of such tragedies is distributed sensor nodes that detect obstacles and monitor train motion [1]. In such applications, an important limitation is the near impossible task of maintaining numerous sensors and microsystems. Accordingly, the development of alternate low-cost and reliable distribute power sources would fill an acute need to replace traditional batteries or electricity supply. To this need, energy harvesting of ambient vibrations and pneumatic vortices induced by running subway trains is proposed to enable self-sufficient wireless sensor nodes and/or many other surveillance devices. A primary issue limiting energy harvesting advances is its poor efficiency, as linear generators still use frequency matching to achieve optimal harvesting performance [2]. However, in practice, the power output can be drastically reduced due to many limiting factors that may result in mismatch between the excitation and the resonance frequencies. Recently, piezoelectric energy harvesting using coupled magnets has been proposed to enhance bandwidth and therefore the harvesting efficiency [3,4]. However, to date, coupling the electromagnetic and piezoelectric transduction mechanisms in one device has not yet been investigated nor has pneumatic vortices yet been used as an ambient power source. This underscores the promising idea of my proposal, which is to develop broadband hybrid electromagnetic and piezoelectric harvesters that rely on ambient vibrations and pneumatic vortices induced by running subway trains. The main objectives of this proposed research are: 1) How to convert ambient vibrations and pneumatic wave vortices to electric power? 2) What is the harvested output power? Is it sufficient to power a sensor network? 3) To use the results from this UTRC investment to develop proposals to interested industries and agencies to address this important societal need of public health and safety.

Project Details

Project Type: 
UTRC Research Initiative
Project Dates: 
January 1, 2014 to December 31, 2014
Principal Investigators: 
Ya Wang
Institution: 
State University of New York (SUNY)
Sponsor(s): 
University Transportation Research Center (UTRC)
Publications: 
Final Report
Project Status: 
Complete
Please subscribe to our Newsletter:

Get our newsletter

Please enter your email address to subscribe to our newsletter:

Contact Us

University Transportation Research Center
Marshak Hall - Science Building, Suite 910 
The City College of New York
138th Street & Convent Avenue ,New York, NY 10031