• UTRC II SUBMISSION SYSTEM
  • Careers
  • Contact
  • Login / Register

Search form

Home
  • Home
  • About
    • Welcome to the UTRC Site
    • Theme
    • Staff
    • Board of Directors
    • Press
    • Annual Report
    • Program Progress Performance Report
    • Newsletter
  • Research
    • Projects
    • RFPs
    • Submit Your Proposal
    • Funding Categories
      • UTRC Research Initiative
      • UTRC Advanced Technology Initiative
      • UTRC Faculty Development Mini-grants
      • UTRC Best Transportation Paper Competition
      • News
  • Publications
  • Directory
    • Consortium Universities
    • Partners
    • Principal Investigators
    • Staff
    • Board of Directors
  • Education
    • Where to Study
    • Transportation and Planning Doctoral Series
    • AITE Scholarships
    • UTRC Dissertation Grants
    • Summer Institute
    • September 11th Memorial Program
    • Technology Transfer and Training
    • Online Graduate Certificate Program
    • UTRC Travel Grants
    • Student Award Recipients
    • Apply For Scholarships
  • Events
    • Upcoming Events
    • Past Events
    • Visiting Scholar Seminar Series
  • Resources

Accelerated Aging of Asphalt by UV-Oxidation

One of the primary mechanisms in which asphalt binder and asphalt pavement undergoes aging is oxidation. Oxidative aging can be categorized as either thermal oxidation, which occurs primarily during mixing, transporting, and placement, or UV-oxidation which occurs throughout the lifetime of the pavement due to solar irradiance. This project aims to further investigate the UV-oxidation of asphalt binder. Through experimental tests on thin asphalt binder specimens and an analytical investigation of actual in-field UV-irradiance measurements, a link will be made between laboratory accelerated aging due to UV-oxidation and in-service aging that occurs during the service life of a pavement. UV fluorescent lamps will be used to expose thin asphalt binder samples to UV radiation and the extent of UV-oxidation will be evaluated using a rotational viscometer. As asphalt binder oxidizes it begins to stiffen due to the formation of new functional groups including carbonyls and sulfoxides. This chemical change significantly alters the asphalt binder’s rheological properties, including an increase in the viscosity which leads to a higher susceptibility to fatigue cracks and pavement deterioration.

Project Details

Project Type: 
Emerging Investigators Program
Project Dates: 
September 1, 2016 to March 31, 2018
Principal Investigators: 
Daniel Hochstein
Institution: 
Manhattan College
Sponsor(s): 
University Transportation Research Center (UTRC)
Publications: 
Final Report
Project Status: 
Complete
Please subscribe to our Newsletter:

Get our newsletter

Please enter your email address to subscribe to our newsletter:

Contact Us

University Transportation Research Center
Marshak Hall - Science Building, Suite 910 
The City College of New York
138th Street & Convent Avenue ,New York, NY 10031