• UTRC II SUBMISSION SYSTEM
  • Careers
  • Contact
  • Login / Register

Search form

Home
  • Home
  • About
    • Welcome to the UTRC Site
    • Theme
    • Staff
    • Board of Directors
    • Press
    • Annual Report
    • Program Progress Performance Report
    • Newsletter
  • Research
    • Projects
    • RFPs
    • Submit Your Proposal
    • Funding Categories
      • UTRC Research Initiative
      • UTRC Advanced Technology Initiative
      • UTRC Faculty Development Mini-grants
      • UTRC Best Transportation Paper Competition
      • News
  • Publications
  • Directory
    • Consortium Universities
    • Partners
    • Principal Investigators
    • Staff
    • Board of Directors
  • Education
    • Where to Study
    • Transportation and Planning Doctoral Series
    • AITE Scholarships
    • UTRC Dissertation Grants
    • Summer Institute
    • September 11th Memorial Program
    • Technology Transfer and Training
    • Online Graduate Certificate Program
    • UTRC Travel Grants
    • Student Award Recipients
    • Apply For Scholarships
  • Events
    • Upcoming Events
    • Past Events
    • Visiting Scholar Seminar Series
  • Resources

Effect of Implementing Lean-On Bracing in Skewed Steel I-Girder Bridges

Skew of the supports in steel I-girder bridges cause undesirable torsional effects, increase cross-frame forces, and generally increase the difficulty of designing and constructing a bridge. The girders experience differential deflections due to the skewed supports, and undesirable effects arise when the girders are linked transversely. Before the placement of the deck, the main method of linking the girders transversely is through the use of cross-frames. The cross-frames are designed to provide stability during construction and distribute transverse loads through the bridge girders; this is their primary role. Cross-frames also help control differential displacement during deck placement and distribute vertical loads in the bridge’s elastic and inelastic ranges. The cross-frames are not specifically designed for these tasks; these are the secondary roles of the cross-frames. Lean-On bracing has been proposed to reduce skew effects caused by traditional cross-frames. While having been shown to improve skew effects, the alternative cross-frame designs have not been evaluated on the effect they have on the cross-frames’ secondary roles.

Project Details

Author(s): 
Dr. Andrew J. Bechtel
Universities: 
The College of New Jersey
Publication Year: 
2016
Publication Type: 
Final Report
Project: 
Improving Cross‐Frame Design to Reduce the Effects of Skew in Steel I‐Girder Bridges
Please subscribe to our Newsletter:

Get our newsletter

Please enter your email address to subscribe to our newsletter:

Contact Us

University Transportation Research Center
Marshak Hall - Science Building, Suite 910 
The City College of New York
138th Street & Convent Avenue ,New York, NY 10031