• UTRC II SUBMISSION SYSTEM
  • Careers
  • Contact
  • Login / Register

Search form

Home
  • Home
  • About
    • Welcome to the UTRC Site
    • Theme
    • Staff
    • Board of Directors
    • Press
    • Annual Report
    • Program Progress Performance Report
    • Newsletter
  • Research
    • Projects
    • RFPs
    • Submit Your Proposal
    • Funding Categories
      • UTRC Research Initiative
      • UTRC Advanced Technology Initiative
      • UTRC Faculty Development Mini-grants
      • UTRC Best Transportation Paper Competition
      • News
  • Publications
  • Directory
    • Consortium Universities
    • Partners
    • Principal Investigators
    • Staff
    • Board of Directors
  • Education
    • Where to Study
    • Transportation and Planning Doctoral Series
    • AITE Scholarships
    • UTRC Dissertation Grants
    • Summer Institute
    • September 11th Memorial Program
    • Technology Transfer and Training
    • Online Graduate Certificate Program
    • UTRC Travel Grants
    • Student Award Recipients
    • Apply For Scholarships
  • Events
    • Upcoming Events
    • Past Events
    • Visiting Scholar Seminar Series
  • Resources

Analysis of Curved Weathering Steel Box Girder Bridges in Fire

Bridge fires can present a severe hazard to the transportation infrastructure system. In fact, a nationwide survey by the New York State Department of Transportation (NYSDOT) has shown that fires have collapsed approximately three times as many bridges as earthquakes. Bridge fires are often intense as they may be fueled by gasoline from vehicles that have crashed in the vicinity of the bridge. Additionally, code recommendations and guidelines for fire protection of bridges are lax. Large fuel loads and a lack of code requirements for fire protection of bridges have left bridges quite vulnerable to fire, particularly unprotected steel bridges, which was established in recent research. The research focus has mainly been on traditional carbon steels at elevated temperatures and bridges of simple geometry such as plate girders. It is therefore necessary to expand on this research to include additional materials such as weathering steel and additional bridge geometries such as curved box girders.

Weathering steel has been widely used by State DOTs for construction of steel bridges because of the maintenance cost savings. New York State DOT’s preferred structural steel for bridge girders is weathering steel, and it was reported that they owned more than 1200 weathering steel bridges in 2000. 2 Weathering steel forms a protective layer of rust (patina) to prevent corrosion of the steel and only recently have the mechanical properties of weathering steel at elevated temperatures been determined. The determination of these properties allows for discussion of the behavior of weathering steels in fire. Additionally, curved box girders are often used in large highway bridge interchanges. The special geometry and loading conditions of curved box girders adds to the complexity of the bridge fire problem.

The work described in this proposal is part of a larger testing program to investigate the behavior of curved weathering steel box girder bridges subject to fire loading. Phase I (to be completed as part of the proposed work) will begin with an investigation into the behavior of curved traditional (non-weathering) steel box girders subject to fire loading and Phase II (to be completed later) will expand on

 

Related Publications:

Braxtan, N.L., Whitney, R., Wang, Q., and Koch, G. (2015). “Preliminary investigation of composite steel box girder bridges in fire.” Bridge Structures, 11, 105-114.

Braxtan, N.L., Wang, Q., Whitney, R., and Koch, G. (2015). “Numerical analysis of a composite steel box girder bridge in fire.” Applications of Structural Fire Engineering 2015 Conference Proceedings

Project Details

Project Type: 
Faculty-Initiated Research
Project Dates: 
August 1, 2014 to May 31, 2016
Principal Investigators: 
Reeves Whitney
Institution: 
Manhattan College
Sponsor(s): 
University Transportation Research Center (UTRC)
Publications: 
Project Brief
Final Report
Project Status: 
Complete
Please subscribe to our Newsletter:

Get our newsletter

Please enter your email address to subscribe to our newsletter:

Contact Us

University Transportation Research Center
Marshak Hall - Science Building, Suite 910 
The City College of New York
138th Street & Convent Avenue ,New York, NY 10031