• UTRC II SUBMISSION SYSTEM
  • Careers
  • Contact
  • Login / Register

Search form

Home
  • Home
  • About
    • Welcome to the UTRC Site
    • Theme
    • Staff
    • Board of Directors
    • Press
    • Annual Report
    • Program Progress Performance Report
    • Newsletter
  • Research
    • Projects
    • RFPs
    • Submit Your Proposal
    • Funding Categories
      • UTRC Research Initiative
      • UTRC Advanced Technology Initiative
      • UTRC Faculty Development Mini-grants
      • UTRC Best Transportation Paper Competition
      • News
  • Publications
  • Directory
    • Consortium Universities
    • Partners
    • Principal Investigators
    • Staff
    • Board of Directors
  • Education
    • Where to Study
    • Transportation and Planning Doctoral Series
    • AITE Scholarships
    • UTRC Dissertation Grants
    • Summer Institute
    • September 11th Memorial Program
    • Technology Transfer and Training
    • Online Graduate Certificate Program
    • UTRC Travel Grants
    • Student Award Recipients
    • Apply For Scholarships
  • Events
    • Upcoming Events
    • Past Events
    • Visiting Scholar Seminar Series
  • Resources

Alkali Silica Reaction (ASR) In Cement Free Alkali Activated Sustainable Concrete

Increased awareness in this decade on the significance of developing sustainable materials for construction has renewed the interest in exploring Alkali Activated Concrete (AAC), a concrete that contains no cement but only industrial by-products such as fly ash and slag, as a low energy alternative to the conventional concrete. Preliminary studies to evaluate the potential of alkali activated slag/fly ash as a sustainable alternative to Portland cement concrete is quite promising. Strength comparable to Portland cement concrete has been obtained in AAC under laboratory conditions. Through a UTRC2 grant, PI’s research group has successfully developed AAC with compressive strengths as high as 60 MPa using slag or class C fly ash as the sole binder, and sodium silicate solution as the activator [1]. However, transfer of this technology to the field has not received the expected momentum, primarily due to two major technical concerns: (1) potential for higher shrinkage and increased cracking, and (2) uncertainty associated with the possible Alkali Silica Reaction (ASR) related durability issues. Conducting experimental studies focusing on the detailed assessments of the durability performance is the most powerful mean to overcome these barriers.

Project Details

Project Type: 
Faculty-Initiated Research
Project Dates: 
May 30, 2015 to December 31, 2016
Principal Investigators: 
Dr. Sulapha Peethamparan
Institution: 
Clarkson University
Sponsor(s): 
University Transportation Research Center (UTRC)
Publications: 
Project Brief
Final Report
Project Status: 
Complete
Please subscribe to our Newsletter:

Get our newsletter

Please enter your email address to subscribe to our newsletter:

Contact Us

University Transportation Research Center
Marshak Hall - Science Building, Suite 910 
The City College of New York
138th Street & Convent Avenue ,New York, NY 10031