• UTRC II SUBMISSION SYSTEM
  • Careers
  • Contact
  • Login / Register

Search form

Home
  • Home
  • About
    • Welcome to the UTRC Site
    • Theme
    • Staff
    • Board of Directors
    • Press
    • Annual Report
    • Program Progress Performance Report
    • Newsletter
  • Research
    • Projects
    • RFPs
    • Submit Your Proposal
    • Funding Categories
      • UTRC Research Initiative
      • UTRC Advanced Technology Initiative
      • UTRC Faculty Development Mini-grants
      • UTRC Best Transportation Paper Competition
      • News
  • Publications
  • Directory
    • Consortium Universities
    • Partners
    • Principal Investigators
    • Staff
    • Board of Directors
  • Education
    • Where to Study
    • Transportation and Planning Doctoral Series
    • AITE Scholarships
    • UTRC Dissertation Grants
    • Summer Institute
    • September 11th Memorial Program
    • Technology Transfer and Training
    • Online Graduate Certificate Program
    • UTRC Travel Grants
    • Student Award Recipients
    • Apply For Scholarships
  • Events
    • Upcoming Events
    • Past Events
    • Visiting Scholar Seminar Series
  • Resources

Truck Driver Fatigue Assessment using a Virtual Reality System

The proposed project will use the CAVE Automated Virtual Reality Environment to develop a system capable of evaluating driver reactions and assess driver fatigue in a safe no-risk environment. Driver alertness and reactions will be tested under a variety of conditions (e.g. day, night, snow, rain, fog, etc.) and a variety of events will test the driver’s awareness (e.g. lane closures, sudden traffic stops, construction, erratically behaving cars). Driver statistics such as lane location, driver crossing over dashed or solid white lines, reaction time and eyelid droop/closure will all be recorded and assessed.

The project will consist of a research and hardware installation phase, a software implementation phase and a brief driver test phase. During the research phase, we will categorize the relationship between shifting, braking and steering wheel response, so as to make the simulation as realistic as possible. A team of civil, mechanical, electrical and computer engineers and real-world truck drivers will be assembled to complete the project. It is anticipated that the largest effort in the project will be the software programming required to render the 3D graphical interface.

We will develop a proof of concept by testing a limited number of long-haul tractor trailer drivers both before their shift begins and at their maximum hourly limit. The real power of Rowan’s CAVE™ Virtual Reality environment is the ability to mix virtual reality imagery with real devices. For this study, the driver will be placed in a bucket seat and use a steering wheel, shift lever and foot pedal interfaced into the system software. The driver will be able to traverse custom landscapes, while we test their response under controlled conditions.

Our intention will be to expand the initial project to run studies to assess driver fatigue for several permutations of driving and rest times for specific driving conditions (e.g. driving in heavy rain with darkened lighting or heavy snow with road glare for prolonged periods). The goal will be to determine if drivers would benefit from more frequent mandatory rest periods when driving in harsh driving conditions. The study may also be expanded to quantify the effect of driving during a midnight to 5am time frame versus a daytime time frame to assess its effect on fatigue.

Project Details

Project Type: 
Faculty-Initiated Research
Project Dates: 
April 1, 2014 to August 31, 2016
Principal Investigators: 
Dr. Yusuf A. Mehta
Institution: 
Rowan University
Sponsor(s): 
University Transportation Research Center (UTRC)
Publications: 
Project Brief
Final Report
Project Status: 
Complete
Please subscribe to our Newsletter:

Get our newsletter

Please enter your email address to subscribe to our newsletter:

Contact Us

University Transportation Research Center
Marshak Hall - Science Building, Suite 910 
The City College of New York
138th Street & Convent Avenue ,New York, NY 10031