• UTRC II SUBMISSION SYSTEM
  • Careers
  • Contact
  • Login / Register

Search form

Home
  • Home
  • About
    • Welcome to the UTRC Site
    • Theme
    • Staff
    • Board of Directors
    • Press
    • Annual Report
    • Program Progress Performance Report
    • Newsletter
  • Research
    • Projects
    • RFPs
    • Submit Your Proposal
    • Funding Categories
      • UTRC Research Initiative
      • UTRC Advanced Technology Initiative
      • UTRC Faculty Development Mini-grants
      • UTRC Best Transportation Paper Competition
      • News
  • Publications
  • Directory
    • Consortium Universities
    • Partners
    • Principal Investigators
    • Staff
    • Board of Directors
  • Education
    • Where to Study
    • Transportation and Planning Doctoral Series
    • AITE Scholarships
    • UTRC Dissertation Grants
    • Summer Institute
    • September 11th Memorial Program
    • Technology Transfer and Training
    • Online Graduate Certificate Program
    • UTRC Travel Grants
    • Student Award Recipients
    • Apply For Scholarships
  • Events
    • Upcoming Events
    • Past Events
    • Visiting Scholar Seminar Series
  • Resources

Impact of Polymer Modification on Mechanical Viscoelastic Properties

This study was initiated with the aim of evaluating the relative impact of different cross-linking agents on the rheological and morphological properties of polymer modified asphalt binders (PMAs). To complete this objective, two cross-linking agents (an aromatic oil and silicon oxide) were selected for evaluations. The cross-linking agents were then added to a styrene-butadiene-styrene (SBS) polymer modified binder (virgin PG 70-22) at different dosages. The selected cross-linking dosages were 2 and 4% by weight of virgin binder. The SBS, virgin binder, and cross-linking agents were mixed together for 90 minutes using a high shear mixer. The morphology of the modified binder was then tested using a florescent microscope and the rheological properties were evaluated using the dynamic shear rheometer (DSR) to determine the dynamic shear modulus values at different temperatures (i.e., 70oC and 76oC) and the multiple stress creep recovery (MSCR) properties of these binders.

Project Details

Author(s): 
Dr. Yusuf A. Mehta
Universities: 
Rowan University
Publication Year: 
2015
Publication Type: 
Final Report
Project: 
Impact of Polymer Modification on Mechanical and Viscoelastic Properties
Please subscribe to our Newsletter:

Get our newsletter

Please enter your email address to subscribe to our newsletter:

Contact Us

University Transportation Research Center
Marshak Hall - Science Building, Suite 910 
The City College of New York
138th Street & Convent Avenue ,New York, NY 10031